If we can learn one lesson from the medium of the video game, it is that fixed, linear approaches to subjects are not always the most satisfying or appropriate ways to engage with ideas and materials. This is something that is well understood by music historians; the idea of a singular ‘history’ has become nuanced into a multiplicity of ‘histories’ that can be told. Taking my cue from the subject under discussion, I here present not the history of game music, but rather, a few different ways of drawing histories of game music. There are three types of game-music history that this chapter examines: technological histories, game type histories, and reception histories. These historical perspectives intersect and overlap, but they each have something in particular to reveal about the music of video games.

Technological Histories

Because video games are necessarily technological entities, video-game music is inherently bound up with the computer technology used in its creation. For this reason, historical perspectives that focus on technology are useful for investigating the frameworks within which game music has been composed and how these parameters have influenced game-music aesthetics.

Perhaps the most traditional way of understanding game-music history is in terms of chronological stages of game music as defined by audio apparatus (Collins 2008 and Fritsch 2013, for example, follow this model). As technologies develop, the musical possibilities they facilitate change. This historical narrative begins with *Pong* (Atari 1972). While earlier games had included sound effects, the arcade game *Pong* and home console clones of *Pong* were the first to include sonic material we can consider as musical. *Pong* designer Al Alcorn has described how the audio was created when he was asked to add sound to the game:

> I had no idea, so I went in there that afternoon and in less than an hour poked around and found different tones that already existed in the sync generator, and gated them out and it took half a chip to do that.

Alcorn in Shea 2008
The square wave tones used in *Pong* are very simple: one pitch for the ball hitting the bat, another for striking the wall (an octave lower), and a distorted version of the lower tone for when a point is scored. This musical sound sits at the boundary between sound effect and music—undeniably pitched, but synchronized to the on-screen action in a way more similar to a sound effect. In cases where *Pong* was adapted and copied, the tones were usually also replicated (Collins 2008: 20). It was not until 1978 that continuous music would first be introduced into games, with the famous *Space Invaders* (Midway) (d’Escriván 2007: 167), which features a bass-register four-note descending chromatic ostinato that increases in speed as the indefatigable aliens march ever-faster toward Earth.

From these ‘firsts,’ a historical trajectory can be drawn that describes the evolution of both the technology and the music that it played. One of the most common ways of discussing this history of game technology is in terms of home game consoles. The home console video-game industry uses a model of production whereby fundamentally the same product is superseded with a more technologically advanced incarnation after a number of years. While technological development is a continuous process, the life cycles of these consoles create the impression of discrete leaps of technological progression, and as such, serve as a ready-made architecture for periodization. As befits the model of succession, in popular discourse about games, these periods are known as ‘generations’ (Table 11.1).

Periodization based on home games-console hardware omits other strands of gaming that do not follow such clear-cut eras, such as personal computers (PCs), arcade machines, telephones, and handheld gaming technology (the latter of which typically lags about a generation behind console technology). Nevertheless, as broad categories, the ‘generation’ shorthand is still helpful as a way to organize the historical narrative of technological evolution so long as we are aware of its limitations. For each of the generations, we can chart the developments within that time period based upon the dominant audio technology (Table 11.2).

Table 11.1 Generations of home television games consoles (created with reference to Donovan 2010 and Kent 2001)

<table>
<thead>
<tr>
<th>Generation</th>
<th>First Console</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1972 (Odyssey)</td>
<td>Coleco Telstar, Magnavox Odyssey, Nintendo Color TV-Game</td>
</tr>
<tr>
<td>2</td>
<td>1976 (Channel F)</td>
<td>Atari 2600, ColecoVision, Fairchild Camera and Instrument Channel F, Magnavox Odyssey 2, Mattel Intellivision</td>
</tr>
<tr>
<td>3</td>
<td>1983 (NES and SG-1000)</td>
<td>Atari 7800, Nintendo Famicom aka Nintendo Entertainment System (NES), Sega Master System, Sega SG-1000</td>
</tr>
<tr>
<td>4</td>
<td>1987 (PC-Engine)</td>
<td>Sega Mega Drive (aka Sega Genesis), Super Famicom aka Super Nintendo Entertainment System (SNES), TurboGrafx-16 aka PC-Engine</td>
</tr>
<tr>
<td>5</td>
<td>1993 (3DO)</td>
<td>3DO Multiplayer, Nintendo 64, Sega Saturn, Sony PlayStation</td>
</tr>
<tr>
<td>6</td>
<td>1998 (Dreamcast)</td>
<td>Dreamcast, Gamecube, PlayStation 2, Xbox</td>
</tr>
<tr>
<td>7</td>
<td>2005 (Xbox 360)</td>
<td>PlayStation 3, Wii, Xbox 360</td>
</tr>
<tr>
<td>8</td>
<td>2012 (Wii U)</td>
<td>PlayStation 4, Wii U, Xbox One</td>
</tr>
<tr>
<td>Generation</td>
<td>Key Musical-Technological Achievements</td>
<td>Facilitated By</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>Pitched sound production.</td>
<td>Production and manipulation of waveforms.</td>
</tr>
<tr>
<td>2</td>
<td>Continuous music, different timbres, multiple pitches sounding simultaneously.</td>
<td>Dedicated sound chips in arcade machines, with options to vary timbres. Sometimes several chips used in one arcade machine. Home consoles also allow multiple voices simultaneously. Some use variations on arcade chips. Atari 2600 has complex tuning difficulties, restricting available pitches (Collins 2008: 21).</td>
</tr>
<tr>
<td>3 (8-bit era)</td>
<td>Wider instrumental ranges, chromatic completeness of pitched parts.</td>
<td>Chip development to facilitate wider range. Sound cards developed for PCs to extend sound capabilities. Often based on arcade sound chips. Other home computers, like Commodore 64 (using SID [Sound Interface Design] chip), with advanced sound capabilities.</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Generation</th>
<th>Key Musical-Technological Achievements</th>
<th>Facilitated By</th>
<th>Examples</th>
<th>Aesthetic Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (16-bit era)</td>
<td>More voices, stereo sound, greater polyphony per part, synthesis technology allows game music to emulate ‘real world’ instruments, as well as expanding timbral possibilities.</td>
<td>Frequency Modulation (FM) synthesis to emulate instrumental sounds (e.g., Mega Drive) and wavetable synthesis using preset instrumental samples (e.g., SNES). Generally increased use of sampling.</td>
<td>SNES—eight-note polyphony, stereo and surround sound (Marks and Novak 2009: 9). Mega Drive—FM chip providing stereo output with six channels (one of which could be used for samples) and a sound-generator chip with three tone generators and a noise generator (Sega 1992). Boom in PC sound cards (especially with FM synthesis features).</td>
<td>Textural depth added through effects like phasing and double tracking. Clearer separation of music and sound effects. MIDI standardized to reduce discrepancy of sonic output across PC cards (Sanger 2003: 173–193). Complex interactive MIDI systems produced, such as iMUSE. Amiga MOD file format similar to MIDI but includes sound data inside file to avoid inconsistency of sounds across subtly different technology (Phillips 2014: 208–209).</td>
</tr>
<tr>
<td>5</td>
<td>CD-quality music in games. Acoustically recorded music more common. Greater use of surround sound.</td>
<td>Adoption of CD-ROM format—allows greater space for high-quality audio data and integration of CD tracks into games. Use of CD audio in many games, from the orchestral The Lost World: Jurassic Park (DreamWorks, 1997) to industrial rock Quake (id, 1996).</td>
<td>CD-quality music sacrifices dynamic reactivity of earlier MIDI systems. Easy integration of real-world music (especially pop music) into games.</td>
<td></td>
</tr>
<tr>
<td>Generation</td>
<td>Key Musical-Technological Achievements</td>
<td>Facilitated By</td>
<td>Examples</td>
<td>Aesthetic Considerations</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Nintendo 64 is cartridge-based, but is able to play recorded sound formats such as MP3, and considerable computational power is available for music (Hayes 1997; Marks and Novak 2009: 10). Consoles support both MIDI and recorded audio.</td>
<td>Nintendo 64</td>
<td>Increasing ability to import players’ own music into games. Attempts to integrate MIDI-approach and recorded audio: Nintendo emphasizes flexible MIDI engine with greater control over sample triggering (MusyX) (IGN 1999). MIDI support maintained for dynamic scores. Improved music synchronization and streaming.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mixing of music more significant with greater role of speech and spatialization of sound effects.</td>
<td>DVD format with more space for acoustically recorded audio and film clips, 5.1 surround sound more common. Audio tools facilitate interactive mixing to allow sound levels (of music and sound effects) to change in relation to contextual activity and other simultaneous sounds (Brandon 2005: 75–76).</td>
<td>Very large number of simultaneous channels now possible (Gamecube and Xbox: 64 channels, PlayStation 2: 48 channels). Therefore, often multiple audio components: PlayStation 2 uses a ‘SCREAM’ tool (SCRiptable Engine for Audio Manipulation), for dealing with multiple audio streams (Brandon 2005: 75–76). Music game peripherals developed (Guitar Hero [Harmonix, 2005], etc.)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Increasing use of multiple high-quality audio streams, manipulated to react to game activity.</td>
<td>Xbox 360’s 'Microsoft Audio Authoring Tool’ allows organization of sound banks of audio files (allowing group Technology able to easily mix multiple audio streams simultaneously, as in, for example, Dead Space (Electronic Arts [EA], 2008).</td>
<td>Innovation in ways of using acoustically recorded music to react dynamically (primarily with software</td>
<td>(Continued)</td>
</tr>
<tr>
<td>Generation</td>
<td>Key Musical-Technological Achievements</td>
<td>Facilitated By</td>
<td>Examples</td>
<td>Aesthetic Considerations</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------------</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>8</td>
<td>Move away from audio competing for resources with general game system. Dedicated chips mean that complex audio processing can be outsourced without detracting from other game properties. High-quality and innovative audio does not have to be at the expense of other game features.</td>
<td>7.1 surround sound (Xbox One). Wii U uses six speaker channels as outputs. Contrary to previous generation, return to dedicated audio processors in PS4 and Xbox One. These new chips integrate with common game programming software and emphasize spatial/directional effects.</td>
<td>Continued convergence between console and PC audio, continued emphasis on mobile gaming and casual/ browser-based games. Continued use of controller speakers—Wii U (stereo) and PS4 (mono). Growth of music haptically controlled (Fantasia: Music Evolved)</td>
<td>Retro gaming aesthetic widespread in independent projects. Particular focus on 8-bit and 16-bit aesthetics. Consoles emphasize collaborative gaming, introducing voice chat between players into game soundscape. Recognition of audio importance in 3-D space.</td>
</tr>
<tr>
<td></td>
<td>Further emphasis on 3-D sound environments. Game speakers in controllers, with distinct audio output.</td>
<td>manipulation, effects and variables), looping points in recorded audio and easy preview of in-game sound experience (Microsoft 2008 and 2013). Blu-ray format gives increased storage (PlayStation 3). Wii includes speaker on controller.</td>
<td>3-D sound processing common in seventh-generation consoles. Wii controller speaker extends sources of game sound into the real-world space closer to the listener. Development of smartphone and tablet games, usually using low-quality speakers or headphones. Phone games usually demand nonintegral sound so that they can be played with the audio muted in public spaces.</td>
<td>technology rather than hardware technology). Emphasis on software makes providing audio for different consoles substantially more straightforward and standardizes game audio. Emphasis on software (rather than hardware) audio engineering in consoles, allowing flexibility for music programming: processing power can be harnessed as the programmers wish, rather than working within a rigid architecture dictated by audio hardware. (Marks 2009: 343–346)</td>
</tr>
</tbody>
</table>
The historical perspective summarized in Table 11.2 and more elaborately presented in Belinkie (1999), Cerrati (2006), Collins (2008), and Fritsch (2013) is useful for understanding several dimensions of game music. Most obviously, technology elucidates aspects of the musical output that it would be difficult to otherwise explain: the odd tuning of the Atari 2600, for instance, or the reasons why so many compositions for the NES assign the same kinds of parts to the same wave types. In tracing this impact of technology upon music, we can see the concomitant aesthetic traits—such as the ability to emulate acoustic instrumental timbres in the era of FM synthesis chips, the facility for longer musical loops as memory capacity increases, and how the Mega Drive's ability to sequence repeated riffs made it well-suited to progressive rock styles (Collins 2008: 43).

The nature of technological development also reveals some of the values and musical priorities of the game industry, as companies choose the areas in which to invest for innovation—for example, generative music technology has rarely been a high priority for development, while much energy has been expended in facilitating more audio channels and high-quality audio playback. This perspective of value is particularly interesting at moments where competing directions are open to developers: during the fifth generation, producers had to choose whether to adopt the high-quality sound of CD audio, or to retain the interactive flexibility of MIDI-style ‘note data’ programming. In this technological context, the decisions taken by producers speak to underlying conceptions of music in the game: does a producer believe it more important to have music that closely and smoothly reacts to action in the game, or is interactivity less significant than the quality of the audio and/or the use of preexisting music? Knowing that such a choice had to be made allows us to draw conclusions about how the developers conceived of the role of music in the game.

As well as showing how technological factors determine aspects of the music, in the process revealing aesthetic undercurrents and musical values at play, technological histories allow us to identify moments of important change. We could, for instance, focus on how the standardization of MIDI impacted upon game music, or the influence of the aforementioned introduction of CD audio in games. Aside from specific moments, these histories more generally trace how the position of music in games has evolved. From the earliest generations of game sound, where music was barely distinct from sound effects, we can chart the increasingly complex soundscape of games. Video-game music has become part of an audio context that now includes recorded voices, ambient sound, Foley, and sound effects processed appropriately for a virtual 3-D environment. Music must negotiate its place in a dense and

<table>
<thead>
<tr>
<th>Generation</th>
<th>Key Musical-Technological Achievements</th>
<th>Facilitated By</th>
<th>Examples</th>
<th>Aesthetic Considerations</th>
</tr>
</thead>
</table>
multifaceted audio stream. Technological histories are not limited to identifying compositional restrictions; they also explain the aesthetic challenges faced by composers and the way that game music has evolved as a result.

Histories of Game Types

Game-music history based on technological evolution is useful for understanding the parameters within which composers work, but it does not always help us to understand some of the musical strategies and decisions made within those frameworks. When comparing the strategy game Command & Conquer 4: Tiberian Twilight made in 2011 (EA) with another strategy game from 1992, Dune II (Westwood), technological history can tell us why Command & Conquer 4 uses high-quality acoustically recorded music with a large orchestra and choir, and with smooth musical transitions, while Dune II uses MIDI sounds and disjunctive changes between cues; but it does not explain why music reacts to the gameplay in a similar way in both games, despite the large chronological interval between them. A technological perspective is hard-pressed to explain why a strategy game made in 2011 uses music programmed more like a strategy game of 1992 than a racing game of 2011. A history of game types can shed light on this issue.

The most dominant organizing principle used by players, scholars, and producers to understand the vast world of video games is that of ‘video-game genre.’ Unlike genre as it has traditionally been understood to operate in music and film, the term when applied to games is closer to a synonym for ‘type’: video games are typically categorized based on the core gameplay mechanism. Game programmers and media studies scholars have both addressed the issue at some length (Apperley 2009; Bates 2004, 39–95; Poole 2000, 29–59; Wolf 2005; etc.) and emphasize traditions of games within the same genre over a long historical span. Furthermore, gaming communities prioritize genre; in casual and journalistic discourse, standard abbreviations and terms are used to indicate the format of gameplay in any one game, based on the genre to which it belongs. For example, a game referred to as an ‘FPS’ (First-Person Shooter) would describe a game where the main objective is to move through levels, eliminating enemies using firearms, with the gameplay screen representing a fixed first-person viewpoint and the selected weapon constantly visible. FPS does not, however, communicate anything about the setting or characters in the game, as the terms ‘science fiction’ or ‘western’ might. Game-genre descriptions are used to communicate what is expected of the player and the nature of the interactive mechanism in the game in question. Even hybrid games that blend genres are typically expressed as fusions of two (or more) distinct generic elements.

Game-music practitioners encourage an interactive genre-focused perspective. For example, in his book for composers, Paul Hoffert explicitly instructs students to “note how music is used differently in each game genre” (2007: 16). Similarly, Darryl Duncan, a game-music composer and producer, explains that “Primarily the type of game will dictate what type of music is needed” (quoted in Belinkie 1999). Many guides to game-music composition emphasize the importance of the interactive genre (Marks 2009, 247–248; Phillips 2014, 75–96), and some detail compositional approaches to each game type (Hoffert 2007, 143–158; Brandon 2005, 195–201). Since music is involved with game mechanics and the fictional content, game music is subject to two organizing genre-forces. One is the game type, or ‘interactive genre’ (Wolf 2005: 194), and the other is genre in the more traditional sense—what we might call the ‘environmental genre.’
This generic perspective is similar to the way that games are commonly constructed, with game engines that are used and re-used, sometimes in very different fictional settings. The engine *id Tech 3*, for example, developed for *Quake III Arena* (id, 1999) was subsequently used in many different FPS games with varied settings, from historical conflict (*Call of Duty* [Infinity Ward, 2003]) to fantastic alien worlds (*Quake*), present-day environments (*James Bond 007: Agent Under Fire* [EA, 2001]), or known franchise universes (*Star Trek: Voyager—Elite Force* [Raven, 2000]). Conversely, we can consider the situation for games based on George Lucas’s *Star Wars* films. These movies belong to the science-fiction genre and have served as the basis for many different types of games, including first-person shooters (*Dark Forces* [LucasArts, 1995]), adventure games (*Shadows of the Empire* [LucasArts, 1996]), role-playing games (*Knights of the Old Republic* [BioWare, 2003]), a massively multiplayer online role-playing game (*The Old Republic* [BioWare, 2011]), racing games (*Episode I Racer* [LucasArts, 1999]), platform games (*Star Wars* [Namco, 1987]), flying simulation games (*X-Wing* [Totally Games, 1993]), puzzle games (*Angry Birds Star Wars* [Rovio, 2012]), a fighting game (*Masters of Teras Kasi* [LucasArts, 1997]), strategy games (*Empire at War* [Petroglyph, 2006]), educational games (*Droidworks* [Lucas Learning, 1998]), and even a chess game (*Star Wars Chess* [Software Toolworks, 1994]). Each of these sometimes extremely different games is cast in a science-fiction mold, and all of the games use or replicate music from John Williams’s *Star Wars* film scores, but this does not determine the musical priorities of the game in the way that the interactive genre does.

Both the interactive genre and the environmental genre impact on the music in the game, and they represent two of the main parameters that composers and producers consider when creating a game’s music. This is not to say that game music is entirely determined by these two factors, but they remain some of the most significant components that affect a game’s musical makeup. A historical perspective based upon game genre reveals several dimensions of genre dynamics: similar musical-aesthetic emphasis in a genre across a chronological span (exemplified by the strategy games mentioned above that trace the state of battle), evolving traditions of music implementation and functionality within each genre (such as the emergence and subsequent dominance of preexisting music in sports games), and different musical approaches to similar game mechanics across time (such as the myriad of different ways survival horror games use sound to help surprise their players). For illustration of the great potential of genre-based musical investigations, readers need look no further than William Gibbons’s excellent chapter in this volume (Chapter 33), in which he presents research on the musical histories of the role-playing game genre, compared across chronology and geographic regions. Unlike technological histories, which tend to focus on surface musical aesthetics (number of voices, timbres, etc.), interactive genre musical histories emphasize the connection between the music and the mechanics of play.

As has often been pointed out, one of the most important distinguishing aspects of the video-game medium is that it is interactive (Hjorth 2011: 25), which is to say that players are required to actively engage with the media text. So far, the kinds of histories that I have discussed do not take account of the player’s perspective on interacting with games and the music. The players’ reception of game music is another dimension of game-music history.

Reception Histories

The proliferation of video-game blogs, professional reviews, and YouTube comments have given a vast array of data sources for game-music reception studies. For games produced
much earlier than 2000, game reception study relies primarily on printed magazine sources. These can be difficult to access, but archives like Amiga Magazine Rack (http://amr.abime.net/) work to preserve and index historical game reviews.

Game-music reception provides a way of exploring how players’ expectations of game music have changed over time. We can seek out and compare magazine reviews of similar games to identify developments in game-music reception. A reviewer of the medieval fantasy role-playing game Ultima V (Origin, 1988) wrote of the game’s eighteen-minute score,

> There are sixteen tunes altogether, and these alter when you move around the playing area or engage in combat. They may not be the most imaginative pieces of music ever devised, but at least they vary and you’re unlikely to be driven nuts. (Barrett 1989: 69)

In contrast, a reviewer of the 2002 medieval fantasy role-playing game (RPG) Morrowind (Bethesda), a game of comparable scale to Ultima V and one that features forty minutes of music, commented that the game’s soundtrack was too repetitious and brief: “How such a short soundtrack can befit a game as big as Morrowind is anyone’s guess” (Kasavin 2002). It seems, then, that the expectations for repetition and the amount of music in a game have increased over time (at least, for this kind of RPG). This is just one way in which player expectations can be shown to have changed. While a reviewer of Ultima VI (Origin, 1990) refers to the game as having “Well-scripted music scores” because “[t]he background soundtrack changes depending on where you are and what you are doing” (Haynes 1991: 88), the game has the same kind of abrupt musical changes that by 2005 would be severely criticized in another game as “choppy transitions” (Semsey 2005). Of course, expectations of musical duration and programming transitions are only two of the many ways that reception histories can reveal evolutions in the way that players listen to music in games. There are many fruitful avenues for research in this domain: it is likely that careful reception histories can shed light on the changes in players’ attitudes toward sound (especially timbre) quality, musical semiotics such as the use of musical stereotypes, and game-music customization options. Reception histories offer a window into the developing ways that gamers understood, and continue to understand, game music.

Game-music reception, however, is not limited to the music heard during the time spent playing the game. Video-game music exists as part of a wider musical culture and has often made the leap beyond the boundaries of the game text. Since the late-1980s, there has been a strong tradition of concerts, soundtrack albums, and recordings of arrangements of game music. The first full flowering of game music performed and recorded outside the text surrounds the first two games of the Dragon Quest series—Japanese role-playing games with music composed by Koichi Sugiyama. One of the very first professional video-game music concerts was a ‘Family Classic Concert’ held in the Suntory Hall, Tokyo, on the 20th August 1987, which had a program that combined Saint-Saëns’s Carnival of the Animals with suites of music from Dragon Quest (Chunsoft, 1986) and Dragon Quest II (Chunsoft, 1987) (see concert poster archive at Sugimania 2011). Sugiyama’s entrepreneurship also led to recordings of game music arranged for acoustic instruments: a recording of music from Dragon Quest [I] was made in the same year as the game’s release. This record included acoustic performances of the music (primarily for strings with additional brass and percussion, using musicians credited as ‘Tokyo Strings Ensemble’). To flesh out the record’s duration (the game does not contain enough music to warrant a whole LP), the album includes three
incarnations of *Dragon Quest*’s music: the aforementioned arrangements, which elaborate upon and develop the game’s cues; a medley of the music as it is heard in the game; and high-quality synthesizer renditions of the cues, developed with expanded parts much like the orchestral arrangements. Thus, within this early album, the two traditions of releasing the original game soundtrack, and adaptations of game music for pleasurable listening, are both clearly evident.

While the *Dragon Quest* records are not the first game-music albums (claims to this title include *Video Game Music* [Yen Records, 1984], which remixes Namco game sound and other developer–specific albums produced by the Yen, Alfa, and G.M.O. record labels in the mid-1980s), Sugiyama’s activities helped to found a culture of game-music performance that quickly became established and attracted well-known composers and performers (Kohler 2005: 133–134). By 1989, for instance, a soundtrack album of music from *Mother* (Ape, 1989) included an arrangement of the game’s most famous cue by Michael Nyman, with singers from the St Paul’s Cathedral Choir, while Sugiyama recorded *Dragon Quest* music with the London Philharmonic Orchestra in the early 1990s. Since then, concerts and albums of game music have multiplied, and ongoing concert series like *Video Games Live* and the *Final Fantasy* symphonic concerts continue to draw huge audiences.

While the average player may be casually interested in music from games, there are also those who expend a huge amount of effort and time in discussing and researching game music. Game-music culture is fueled by an industrious fan community that documents, transcribes, arranges, performs, disseminates, remixes, analyses, and argues about game music. As fans archive, preserve, and catalog game music, they make available the raw information for histories of game music. These geek historians are the gatekeepers of the culture and do the hard work of researching and documenting information about game music, most often through spending hours with the game materials and meticulously researching record releases of game music. The data presented by preservation archives such as the Video Game Music Preservation Foundation (created 2005) and documentation sites like the Video Game Music Database (created 2000) are valuable for constructing the history of game music. Furthermore, the very existence of these ventures speaks to a further dimension of game-music history beyond the boundaries of the game—the legacy of game music in the lives of the gamers more generally, to the degree that they are willing to invest time and energy in these kinds of projects.

Even casual gamers report great emotional engagement with game music, which can easily become bound up in personal histories. Online, players report, document, and discuss their involvement with game music. The historical legacies of game music in personal lives can be discovered through exploring diverse online materials, whether it be footage of marriages accompanied by music from *The Legend of Zelda* (Anlér 2010) or players describing the personal significance that a cue from *Final Fantasy VII* has for them:

All those afternoons coming home from school to an empty house, with homework in the bag that I didn’t want to do. Turned on the TV, the Playstation. [. . .] I had this savepoint at the train graveyard. Would lay down on the floor, head between my backpack and the controller, and stare at the ceiling fan until I fell asleep to this song.

(Melissa Huynh, comment on ‘Cloud183,’ 2008)

I was 8 when I played it the first time. [. . .] After I was taking Aerith to Sector 7, at the Train Graveyard I heard this theme again. It was the biggest Sensation I’ve
ever felt back then. It made me think about many things both from FF-VII and the Real life.

(iKinetiks KindZne, comment on ‘Cloud183,’ 2008)

Such materials shed light on the reception of game music and the extent to which it figures in personal histories. This dimension of game-music history is an important, and for the players, personally significant, aspect of game music’s cultural legacy.

Reception histories place the listener/player at the center of the historical narrative. Since games are a player-focused medium, reception histories take their cue from the materials under discussion. Player expectations may change over time, but there is coherence in the criteria by which game music has always been appreciated, the most crucial of which is the contribution to, and appropriateness for, the gameplay. In accentuating this human element, reception history also recognizes that video-game music is not sealed into a domain bounded by the limits of the duration and activity of playing the game. Rather, game music transcends those sonic and cultural boundaries. For many people, game music represents an important part of the musical experience of the twentieth and twenty-first centuries.

Playful Histories

The three types of history outlined in this chapter are only a small selection of the historical perspectives open to us when writing about game music. By contrasting the kinds of conclusions that we can draw from the technological, typological, and reception histories, it becomes apparent that no one video-game musical history suffices to serve all purposes. Each perspective highlights certain aspects of history, while obfuscating others. Indeed, multidimensionality in history writing is important to avoid the illusion of a homogenous historical narrative.

Video-game music is a relatively young area of academic study, and much academic discussion has coalesced around certain games and game types (most notably so-called ‘music games’ like *Guitar Hero*). The frequent citation of certain games is a symptom of the field’s adolescence, and it is perhaps inevitable that a canon of well-known and often-discussed instances of game music will be created. Such a process is likely a by-product of a developing field’s process of establishing a core corpus of academic thought. Nevertheless, as the scholarly tradition evolves, it will be crucial to encourage a diverse discourse to avoid forging an unhelpfully unified narrative with received ‘great works’ of game music, lest we create the same historical shackles that music historians have spent the past fifty years trying to break.

Our historical activity can be like our games: not seeking to prize one fixed, definitive account, but instead valuing a variety of different possibilities and iterations, written and rewritten to provide different information, and challenging accepted conventions of linearity. The production of a multiplicity of historical narratives serves as the alternative to futile attempts at writing complete and objective histories—just as the totality of a game experience cannot be captured in one play, neither can the totality of game-music history be captured in one narrative. Instead, and in short, we need playful histories for our playful games.

References

All websites accessed 1 March 2016.

